
Design and Implementation of a high-level multi-
language .NET Debugger

Dennis Strein
Omnicore Software, Werderstr. 87,

76137 Karlsruhe, Germany
MSI, Software Technology Group,

Växjö University, Sweden

strein@omnicore.com

 Hans Kratz
Omnicore Software, Werderstr. 87,

76137 Karlsruhe, Germany

kratz@omnicore.com

ABSTRACT
The Microsoft .NET Common Language Runtime (CLR) provides a low-level debugging application
programmers interface (API), which can be used to implement traditional source code debuggers but can also be
useful to implement other dynamic program introspection tools. This paper describes our experience in using
this API for the implementation of a high-level debugger. The API is difficult to use from a technical point of
view because it is implemented as a set of Component Object Model (COM) interfaces instead of a managed
.NET API. Nevertheless, it is possible to implement a debugger in managed C# code using COM-interop. We
describe our experience in taking this approach. We define a high-level debugging API and implement it in the
C# language using COM-interop to access the low-level debugging API. Furthermore, we describe the
integration of this high-level API in the multi-language development environment X-develop to enable source
code debugging of .NET languages. This paper can be useful for anybody who wants to take the same approach
to implement debuggers or other tools for dynamic program introspection.

Keywords
Debugger, CLR, multi-language, C#, COM-interop, Rotor

1. INTRODUCTION
Tracking execution and examining the internal state
of a program are important techniques for every
developer. They can be used with debuggers to find
bugs and unintended behavior. But they can also be
used in other sorts of dynamic program introspection
tools. A high-level debugger should provide a
defined user experience regardless of the underlying
technology. The developer who examines a running
program cannot be bothered with the low-level
intricacies of the underlying debugging API.
The Microsoft .NET Common Language Runtime
(CLR) provides a low-level debugging API, to
implement such tools. Using this API directly is
difficult. First the API is not easy to use from a
technical point of view, because it is implemented as

a set of COM interfaces instead of a managed API.
Thus, it cannot directly be used in managed C#
[Hei04a] code. Also the low-level debugging API
has no notions of high-level programming languages
or debugging functionality. This has to be
implemented using low-level features.
This paper describes how these problems can be
solved. We describe our experience in defining a
high-level debugger API and implementing it in
managed C# code using COM-interop to access the
low-level CLR debugging API. Furthermore, we
describe the integration of this high-level API in the
multi-language development environment X-develop
[Omn04a] to enable debugging of .NET languages.
The paper is structured as follows: Section 2 gives an
overview of our architecture. Section 3 describes the
supporting CLR debugging technologies. Section 4
explains how to use COM-interop to create a
managed wrapper for the low-level API. Section 5
describes at this API and how to implement high-
level debugging features like breakpoints, stepping
and variable introspection. Section 6 outlines the
integration of these high-level features into the multi-
language development environment X-develop to
create a full-fledged interactive debugger. Section 7
discusses related work. Finally, we summarize this
paper in Section 8.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

2. ARCHITECTURE
This section gives an overview of the architecture of
our debugger.

Design goals
The architecture should fulfill multiple design goals:
1. The main goal is to provide a user interface
which enables all features necessary for conventional
debugging from within the IDE. This functionality
should follow the user's expectations. The developer
should be able to set breakpoints in the source code
at which execution of the whole program is
suspended automatically. Once suspended the
developer can switch between different threads of
execution, display the current stack trace and step
through the source code. When the developer uses
single-stepping all threads of execution must be
resumed to avoid deadlock situations. The developer
also needs to be able to suspend execution at any
time to inspect what the program is doing at that
time. The interface must be powerful enough to
allow a complete examination of the program state.
2. We want to integrate the debugger into the multi-
language development environment X-develop
[Omn04a]. X-develop supports C#, J# and Visual
Basic and has an open API to extend it for new
languages. Thus, it is important that the debugger
also supports multiple languages.
3. We want to implement a high-level debugger API
which provides a clean interface to the IDE hiding all
the runtime-specific peculiarities of the low-level
debugging API.
4. The debugger should be integrated in a way that
provides maximum independence from the IDE.
Even if the debugger interface ceases to function, the
IDE should not be affected.

System Architecture
Figure 1 shows our architecture. On top, there is the
X-develop environment that communicates with the

debugger control program written in C#. This control
program uses a high-level API which provides the
desired high-level debugging functionality. The
implementation of this API is based on the low-level
CLR debugging services. The implementation is
described in detail in section 4.

3. SUPPORTING TECHNOLOGIES
This section gives an overview of the CLR
debugging services and other supporting
technologies.

CLR Debugging Services
The Common Language Runtime provides low-level
debugging services for runtime control and program
introspection. Additionally, it defines a set of
notifications for specific events that may occur
during the execution of a program. The CLR
debugging services are implemented as a set of COM
interfaces. The program being debugged runs in its
own Win32 host process. In the same process there is
a special helper thread that communicates with the
debugging services.

Symbol Manager
The CLR and the CLR debugging services know
nothing about high-level programming languages. It
knows only of the intermediate language (IL).

However, there is a mechanism for mapping source
code to IL code and vice versa. The compilers for the
various .NET languages store the mapping
information in a separate program database file
(PDB). This mapping information can be used for
mapping between lines in the source code and
positions in the IL code or for mapping between
variable names and their respective addresses. The
component that allows access to this information is
called the symbol manager. The symbol manager
API is part of the .NET core libraries. It can be found
in the namespace
System.Diagnostics.SymbolStore.

Additionally to the PDB files the executable files
themselves contain information describing method
names and signatures, class names, etc. This
information is called metadata. It can also be used for
source-to-IL mapping. For example it is possible to
determine all the fields of a given class using
metadata. The metadata API is a COM API like the
debugger API.

One key benefit of using the compiler provided
mapping information is that this information can be
accessed uniformly for all programming languages.
Thus, it provides support for multi-language
debugging without any further work per

X-develop environment

Debugger control program with our
high-level C# debugging API

Low-level CLR debugging API

Figure 1. Architecture of our debugger

programming language. The work is done in the
compilers.

For basic debugging functionality this information is
sufficient. For more advanced applications a more
detailed mapping might be desired. This would
require additional static analysis of the source code
in the compiler. Examples are expression-level
stepping in debuggers or back-in-time debuggers.

4. USING COM INTEROP TO ACCESS
THE CLR DEBUGGING SERVICES
Although the CLR debugging API is a classic COM
API it is possible to implement a debugger in
managed code using COM-interop. The advantage of
this approach is that we can use C# (or any other
managed .NET language) to implement the
debugger. In this section, we give a step-by-step
description how to achieve this.

About COM-interop
COM-interop is a technology to use classic COM
APIs from managed code. This is done by creating
managed wrapper classes representing the COM
interfaces. This wrapper classes can than be called
like normal managed classes. When calling a COM
method from C# code, the CLR will internally
marshal the arguments and return values to/from the
COM object. Creating an instance of a COM class
can be done in C# by simply creating a new instance
using the new keyword. Internally, this causes a call
to the native method CoCreateInstance.

Wrapping the debugger COM API
The preferred way to create wrapper classes is to use
the tool TlbImp.exe that is included in
Microsoft’s .NET framework software development
kit (SDK). This tool reads a COM type library
definition file (TLB) and converts it to a managed
dynamic link library (DLL) containing the wrapper
classes. The file cordebug.tlb that is part of
Microsoft’s .NET framework SDK contains the
definition of the debugger API. To create a wrapper
assembly for this file we initially use TlbImp.exe
to create a wrapper DLL. However, in this special
case the DLL will not be complete. On the one hand
there are classes missing that cannot be automatically
converted by TlbImp.exe, on the other hand even
some definitions in cordebug.tlb are not
complete. To solve this problem we disassemble the
wrapper DLL using ILdasm.exe. This tool is an
intermediate language disassembler and is also part
of the SDK. The result is an editable assembler
version of the DLL. We can now add the missing
classes by hand and adapt incomplete method
signatures. Afterwards we use the SDK assembler

ILasm.exe to create a DLL once again from the
assembly file.

The classes in our wrapper DLL can now be used
from C# code to create a high-level debugger API.
We describe the classes in detail in section 5.

Our approach works with .NET 1.1 and .NET 2.0
depending on which version we want to target. The
Rotor Shared Source CLR [Mic02a] implements the
ICorDebug COM interface as well and can be used
in place of a MS .NET framework.

Wrapping the metadata COM API
It is also possible to write a wrapper class in C#.
Since the required metadata API is quite small we
choose this approach. We only have to write a
wrapper for the IMetadataImport interface. A
C++ header file containing the definition can be
found in the file cor.h, which is part of the SDK. A
wrapper in C# consists of a single C# interface,
which contains the same methods as defined in cor.h.
This interface has to be marked with the
ComImport attribute as well as the correct Guid
attribute. The Guid of the IMetadataImport
interface can be found in the file cor.h. Now we
can use the C# wrapper class to access the metadata
of assemblies.

5. IMPLEMENTATION OF A HIGH-
LEVEL API
This section describes how to use the low-level API
to implement a high-level debugging API, which is
suited for integration into a development
environment. Our high-level API allows to run
programs, set breakpoints in source code, step single
lines, introspect variables defined in the source code
and to browse the fields of objects. The low-level
API on the other hand provides access to the runtime
and is not limited to our particular use case. In the
following sections we will describe in detail on how
to implement specific features affiliated with
debugging. Figure 2 shows the architecture of our
debugger and the high-level debugging API
implementation.

Initializing the debugger
The first thing the debugger has to do is to create an
instance of the ICorDebug interface. This is done
in a completely different way in .NET 1.1 compared
to .NET 2.0.

COM-activation is used in .NET 1.1. COM-
activation is done in C# by simply creating an object
of the COM wrapper class. In our case, new
CorDebugClass() will create the correct class,
which is an instance of the ICorDebug interface.

 However, this causes problems. If one has a .NET
1.1 debugger debugging a .NET 1.1 program, the
.NET 1.1 implementation of ICorDebug will be
used. As soon as .NET 2.0 is installed, that scenario
is automatically updated to use the .NET 2.0
implementation of ICorDebug. Now, if the .NET
2.0 implementation is slightly different than the 1.1
implementation, installing the 2.0 version breaks the
1.1 debugging scenario.

Thus, since version 2.0, the debugger has to create
the ICorDebug object using the method
CreateDebuggingInterfaceFromVersion.
This method takes the desired .NET version as an
argument. The method is defined in mscoree.dll,
which is part of the .NET framework. In C# this
method can be called by defining an extern method.

With the Rotor Shared Source CLR [Mic02a] the
ICorDebug object can be obtained in the same way
as for the .NET 1.1 framework. But before this
method can be used the mscordbi.dll of Rotor
has to be registered as a COM server using the
regsvr32 tool. Unfortunately this is just the
scenario which the second method was designed to
avoid: Once the Rotor mscordbi.dll is
registered the MS .NET 1.1 framework ICorDebug
object can no longer be created using COM-
activation.

The ICorDebug object is the entry point to all
debugging services. The debugger has to call the
Initialize method of the ICorDebug object
before doing anything else.

Handling events
The CLR will notify the debugger whenever certain
events occur. To make this possible the debugger has
to provide an implementation of the
ICorDebugManagedCallback interface. This
interface has to be registered using the

SetManagedHandler method of the
ICorDebug object. The registered implementation
will only receive events that occur when debugging
managed code. There is also a
ICorDebugUnmanagedCallback interface that
can be used for debugging unmanaged code.

Debugger control program with our
high-level C# debugging API

Symbol
Manager

API

Metadata
API

CLR
debugging

API
Whenever an event is raised the affected process will
be suspended. This allows the debugger to handle
these events in an appropriate way. Afterwards the
affected process has to be resumed. The process is
passed as an ICorDebugProcess object to the
corresponding interface method. The debugger has to
call the Continue method of this object to resume
execution. This has to be done for all events even if
they do not require special handling. Otherwise the
execution will not continue.

.PDB .EXE CLR

Figure 2. Implementation Overview

There is one event that needs special treatment. That
is the CreateAppDomain event. It is called when
the CLR application domain of the process is created.
The method will receive an
ICorDebugAppDomain object representing the
application domain. In order to receive further events
it is necessary to call the Attach method of this
object.

We will describe some other relevant events in the
following the sections as well.

Creating a process
The ICorDebug interface provides the method
CreateProcess to create a process to debug. This
method takes essentially the same arguments as the
common Win32 method with the same name. The
CreateProcess method returns an
ICorDebugProcess object representing the
process. The process will be created asynchronously
after the call and the CreateProcess method of
the ICorDebugManagedCallback interface is
called by the debugger once the process has actually
been created. As with all events the process will be
suspended after this event.

Suspending and resuming the process
Suspending and resuming program execution is a
common debugger feature. A process can be
suspended by calling the Stop method of the
ICorDebugProcess object. This method takes an
integer timeout parameter that should be set to some
high value. Otherwise crashes of the CLR can occur.

To resume execution we use the Continue method
of the ICorDebugProcess object.

Mapping between source and IL code
The next features are more difficult to implement
than the previous ones. The reason for this is that we
now need to map between source code and IL code.
The CLR debugging API itself has no notion of
source code. Instead, the mapping has to be done by
the debugger. Section 2 describes how symbol
information is generated by the compilers. We will
now show how to access this information.

First, the IMetadataImport interface can be used
to access metadata of a given module. For a given
module represented by an ICorDebugModule object,
we can get an IMetadataImport object by
calling the GetMetaDataInterface method.

The ISymbolReader interface can be used to
access mapping information form PDB files. The
way to create an ISymbolReader object differs
between .NET 1.1 and .NET 2.0.

In .NET 1.1 the debugger has to create a
SymBinder object. This class is defined in
ISymWrapper.dll, which consequently has to be
referenced by the debugger. The GetReader
method of the SymBinder object returns the
desired ISymbolReader object.

In .NET 2.0 the GetReaderForFile method of
the SymbolBinder interface that is part of the core
library can be used.

For the core debugging features described in this
paper the information provided by the metadata and
symbol manager APIs is sufficient. The following
sections show particular use cases.

Setting breakpoints
Breakpoints are set in certain positions in source
files. With the CLR debugging API however, a
breakpoint can only be set on a specific point in the
intermediate language (IL) level. Hence, we have to
implement the mapping between source code and
intermediate code. To do this, we use symbolic
information as described in the last section.

5.1.1 Source-to-IL mapping
To set a breakpoint with the debugging API, the IL
position for a given position (line) in a source file is
required. To achieve this, the debugger proceeds as
follows: first it iterates all loaded modules,
respectively the ICorDebugModule objects. For
each module the debugger creates an
ISymbolReader object to access source-to-IL
mapping information as described in the previous
section. Then we call the GetDocuments method
to obtain all source files in the module. If the
breakpoint source file is found in the module we can

use the GetMethodFromDocumentPosition to
obtain the method at the breakpoint position
represented by an ISymbolMethod object. The
GetFunctionFromToken method will then
return an ICorDebugFunction object
representing this method in the debugging API.

The next step is to map the line in the source code to
the corresponding IL instruction. To do this we can
once again use compiler generated information, so
called sequence points. The sequence points of a
method specify for each statement in the source code
where it can be found in the IL code. Thus, the
desired IL instruction can be found by iterating each
sequence point and comparing its line number with
the breakpoint line number.

The sequence points are delivered by the
GetSequencePoints method of the
ISymbolMethod object.

5.1.2 Setting the breakpoint
Once the source-to-IL mapping is done setting the
actual breakpoint is possible. First the debugger calls
the GetILCode method of the
ICorDebugFunction object, which returns an
ICorDebugCode object, representing the methods
IL code. Then we call the CreateBreakpoint
method of this object with the IL position as an
argument. The breakpoint is now set and the
debugged process will suspend once it is hit.

5.1.3 Handling breakpoint events
As soon as the execution of any thread in the CLR
passes the breakpoint the whole process will be
suspended and the Breakpoint event of the
ICorDebugManagedCallback will be raised.
This event contains an ICorDebugThread object
representing the thread that has passed the
breakpoint. We handle this event by raising an event
in the debugger GUI. The GUI now has to show the
affected thread, the source position it has stopped at,
allow stepping the code and support introspection of
variables and object contents. The implementation of
these features is described in the next sections.

Accessing the stack trace
To show the current execution point when the
debugger is suspended we need to access the stack
trace with current IL positions of the affected thread.
We then map this IL position to a position in a
source file using sequence points.

A stack trace of a CLR thread is separated into a
series of so called chains. Each chain contains a
series of frames. We can use the
EnumerateChains and EnumerateFrames

methods to access those. The result is a series of
ICorDebugFrame objects. Each frame object
contains the current IL position. To map these
positions to source positions we use symbol
information and sequence points as described in the
breakpoint section.

Stepping source code
When the debugger has been suspended at a given
line in the source code, it offers the possibility to step
over the next line in the source code, i.e. executing
just this line. Additionally, a step-in feature will step
into the next method called by the stepped line.
Finally, a step-out feature will execute the rest of the
current method and will stop after the call to this
method.

To implement stepping we proceed as follows: a call
to the GetActiveFrame method of the current
ICorDebugThread object will returns an
ICorDebugFrame object. Now the debugger has
to create a stepper object by calling the
CreateStepper method, which returns an
ICorDebugStepper object. The desired stepping
behavior can be achieved by configuring this object.

5.1.4 Step-over
We use the StepRange method of the
ICorDebugStepper object to specify the IL
instructions we want to step over. In fact, this method
takes the IL instructions that should not be stepped as
an argument. To calculate those, the debugger once
again uses the sequence points of the current method
as described in the breakpoint section. The sequence
points contain the information which IL instructions
represent the source code line to be stepped.

5.1.5 Step-in
Step-in can be implement just like step-over with the
difference of passing an additional argument to the
StepRange method.

5.1.6 Step-out
Step-out does not require source-to-IL mapping.
Instead we can just use the StepOut method of the
ICorDebugStepper object.

5.1.7 Other stepping behavior
The debugging API is flexible enough to configure
more stepping features than those described here.
However, its main limitation is the lack of an
appropriate source-to-IL mapping. For example if we
want to step single expressions instead of statements,
the provided mapping information is not sufficient.
In this situation additional static source code analysis
is required.

Accessing local variables
The debugger should show all variables defined at
the current position, and their value. To do this, we
first resolve the defined local variable names in the
source code using the compiler generated source-to-
IL mapping. This mapping will also give us the
address of each variable, which can be then used to
determine its value.

5.1.8 Resolving declared variables
To determine all declared variables at the current
position the debugger first has to retrieve an
ISymbolMethod object representing the current
method. The variables are grouped into scopes in
which they are defined. The root scope of the method
is returned as an ISymbolScope object by the
RootScope property of the ISymbolMethod
object. The subscopes of a scope are returned by the
GetChildren method. The variables of a scope
are returned by the GetLocals method. The
debugger will use these methods and search for
declared variables. The ISymbolScope objects
contain the start and end position in the source file.
This allows to determine the declared variables at a
given source position.

5.1.9 Accessing the value
To access the value of a local variable of an
ICorDebugFrame object the debugger calls the
GetLocalVariable method. This method takes
the address of the local variable and returns an
ICorDebugValue object representing the value.

5.1.10 Rendering values
ICorDebugValue is the base of a hierarchy of
interfaces representing different kinds of values. For
primitive values the GetValue method will return a
pointer to the bytes representing the actual value.
Note that in C# the use of unsafe code and the unsafe
keyword are necessary to access this value. The next
section describes how to access the content of values
representing object references.

Accessing object contents
If a value is a reference to an object, we want to
access the fields of this object with their values.
Doing this recursively allows to access the complete
program state.

A value of an object is represented by an
ICorDebugObjectValue object. The
GetFieldValue method of this object will return
the value. The field is identified by an integer token.
Again we have to use the source-to-IL mapping
information to determine the declared fields with
their token. This is done by using the EnumFields

and GetFieldProps methods of the
IMetadataImport interface.

Conclusion
The previous sections described how to use the low-
level CLR debugger API to implement features of a
high-level debugger. We make them available via a
high-level debugger API – each feature is provided
by a particular method. The low-level API is not
limited to this use case though. It can also be used to
implement other tools for dynamic program
introspection. There are also more features in the
low-level API than those described here. For
example it is possible to suspend and resume
individual threads, or modify data in the debugged
program. This is required to implement further
debugging features or for other applications.

Figure 3. Breakpoints

The “Run-in- Debugger” function will start the
debugger control program and set breakpoints by
sending the appropriate command packets. Once a
breakpoint has been hit, socket communication is
used to obtain the stack trace and associated source
position to show where the debugged program has
stopped. Figure 3 shows this scenario.

6. INTEGRATION IN X-DEVELOP
This section outlines the integration of the debugger
functionality with the development environment X-
develop.

Communication protocol
In order to achieve maximum separation between
IDE and debugger, the debugger interface and the
debugger control program run in different processes
and communicate using sockets. This architecture
also enables easy implementation of remote
debugging later on. There are three types of packets
used for communication between IDE and debugger
control program: command packets, reply packets
and event packets. After startup of the debugger
control program the IDE sends command and request
packets to the debugger control program which in
turn. Those command and request packets are
modeled around the use cases identified in the
previous section. When the debugger receives a
command packet it carries out the requested action
without sending a reply. When the IDE requests
information from the debugger control program, a
reply packet is generated containing the result or an
error flag if the information could not be obtained.
When a breakpoint is hit or execution is suspended
after a step operation, the debugger control program
sends an event packet back to the IDE.

GUI
The GUI provides user access to the debugging
functions. X-develop displays the source code of the
debugged program in its editor and allows setting of
breakpoints in particular lines.

Figure 4. Variables

The user can continue program execution at any time
using the Continue function. It is also possible to step
through the program using the presented stepping
functions. Additionally, all variables declared at the
current position will be shown together with their
value in a tree widget – see Figure 4. If the value is
an object reference it may be further expanded to see
the fields of the object and their respective values.

Experience
The integration in X-develop allows testing the
performance and stability of the debugger. Our
experience was positive:

1. Except for initial hurdles with COM-interop the
implementation was straightforward.

2. Real-world stability of the debugger
implementation was good. All functions work as
intended. Debugging multi-threaded applications
works as well as simple single-threaded applications.

3. Debugger responsiveness is excellent. We
measured the “stepping speed”. This is the time
between pressing the step button, execution of the
step inside the debugger and the callback event with
the new position. The measured time was always
between 50 and 500 milliseconds. This is sufficiently
fast for a responsive user experience.

7. RELATED WORK
The CLR debugging API is explained in detail in the
documentation accompanying the .NET SDK. While
being a comprehensive guide to the low-level API, it
lacks information on how to put together a working
debugger. Neither examples nor a tutorial are
included.
Jon Shute published a series of articles on how to
write a debugger with .NET using the CLR
debugging API [Shu04a]. Unfortunately, the articles
only cover a few details and uses example code
written in C++.
The .NET SDK contains the source code of CorDbg -
a C++ command line debugger using the CLR
debugging COM API directly. It has no high-level
API abstraction nor is it written in managed code.
Microsoft .NET 2.0 provides the source code of a
command line debugger (Mdbg) that is also written
in managed C# code. This tool also uses COM-
interop to access the native debugging API.
However, this tool does not include any
documentation how the integration of the COM
classes is performed. It only works with the 2.0
framework and it does not provide a high-level API
abstraction. Furthermore, our architecture can easily
be extended to support remote debugging and it
offers a stronger separation between the debugger
and the debuggee.

8. CONCLUSION AND FUTURE
WORK
We have described the design and implementation of
a high-level multi-language debugger for the .NET

CLR. One advantage of our approach is that it allows
to use managed C# (or any other .NET language) to
implement the debugger. This can be useful for
everybody who wants to take the same approach to
implement debuggers or other tools for dynamic
programming introspection.
We integrated the debugger in the development
environment X-develop, but it is not limited to this
particular use case.
The implementation of the high-level debugging API
for Mono using the Mono.Debugger low-level
API is underway.
The CLR debugging services provide rich access to
the state of executed programs. The main limitation
is the lack of additional source-to-IL mapping
information. The information generated by the
compilers for the various .NET languages is
sufficient to implement the basic functionality. But
for more advanced applications, additional static
source code analysis is required. A good example for
such an application is a back-in-time debugger
[Kra04a] [Omn04b]. Such a debugger allows
stepping backwards by replaying the previously
recorded program execution.

9. REFERENCES
[Hei04a] A. Hejlsberg, S. Wiltamuth, P. Golde. The C#

Programming Language. Addison-Wesley, 2004.
[Kra04a] Hans Kratz. Implementierung eines Debuggers

mit Rückwärtsschrittfunktion. Diplomarbeit. 2004. In
german.

[Mic02a] Microsoft. Shared source common language
infrastructure. Published on the web at
http://msdn.microsoft.com/net/sscli, 2002.

 [Omn04a] Omnicore Software. X-develop. Published on
the web at http://www.x-develop.com, 2004.

[Omn04b] Omnicore Software. CodeGuide. Published on
the web at http://www.omnicore.com, 2004.

[Shu04a] Jon Shute. Ramblings about .NET and debuggers.
Published as a web page at
http://blogs.chimpswithkeyboards.com/jonshute/, 2004.

	INTRODUCTION
	ARCHITECTURE
	Design goals
	System Architecture

	SUPPORTING TECHNOLOGIES
	CLR Debugging Services
	Symbol Manager

	USING COM INTEROP TO ACCESS THE CLR DEBUGGING SERVICES
	About COM-interop
	Wrapping the debugger COM API
	Wrapping the metadata COM API

	IMPLEMENTATION OF A HIGH-LEVEL API
	Initializing the debugger
	Handling events
	Creating a process
	Suspending and resuming the process
	Mapping between source and IL code
	Setting breakpoints
	Source-to-IL mapping
	Setting the breakpoint
	Handling breakpoint events

	Accessing the stack trace
	Stepping source code
	Step-over
	Step-in
	Step-out
	Other stepping behavior

	Accessing local variables
	Resolving declared variables
	Accessing the value
	Rendering values

	Accessing object contents
	Conclusion

	INTEGRATION IN X-DEVELOP
	Communication protocol
	GUI
	Experience

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	REFERENCES

